Resit Exam — Analysis (WPMA14004)

Thursday 7 July 2016, 9.00h-12.00h

University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. Provide clear arguments for all your answers: only answering "yes", "no", or "42" is not sufficient. You may use all theorems and statements in the book, but you should clearly indicate which of them you are using.
- 3. The total score for all questions equals 90. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (6 + 4 + 5 points)

- (a) Prove that $\sqrt{3}$ is irrational.
- (b) Show that for each $n \in \mathbb{N}$ there exists a number $a_n \in \mathbb{Q}$ such that

$$\sqrt{3} - \frac{1}{n} < a_n < \sqrt{3}.$$

(c) Explain that \mathbb{Q} does *not* satisfy the Axiom of Completeness.

Problem 2 (4 + 4 + 2 + 5 points)

Let 0 < c < 1 and assume that the sequence (x_n) satisfies

$$|x_{n+2} - x_{n+1}| \le c|x_{n+1} - x_n|$$
 for all $n \in \mathbb{N}$.

Prove the following statements:

- (a) $|x_{n+2} x_{n+1}| \le c^n |x_2 x_1|$ for all $n \in \mathbb{N}$.
- (b) $|x_m x_n| \le (c^{m-2} + c^{m-3} + \dots + c^{n-1})|x_2 x_1|$ for all m > n.
- (c) $|x_m x_n| \le \frac{c^{n-1}}{1-c} |x_2 x_1|$ for all m > n.
- (d) (x_n) is convergent.

Problem 3 (7 + 8 points)

Let $K \subset \mathbb{R}$ be a compact set. Consider the set

$$A = \big\{ x \in \mathbb{R} \ : \text{ there exists } y \in K \text{ such that } |x - y| \le 1 \big\}.$$

Prove the following statements:

- (a) If (x_n) is a convergent sequence in A with $x = \lim x_n$, then $x \in A$. Hint: there exists a sequence (y_n) in K such that $-1 \le x_n - y_n \le 1$ for all $n \in \mathbb{N}$.
- (b) A is compact.

Problem 4 (4 + 5 + 6 points)

- (a) State the Mean Value Theorem.
- (b) Let $f,g:[0,\infty)\to\mathbb{R}$ be differentiable functions and assume that

$$f(0) = g(0)$$
 and $f'(x) \le g'(x)$ for all $x \ge 0$.

Prove that $f(x) \leq g(x)$ for all $x \geq 0$. Hint: consider the function h(x) = f(x) - g(x).

(c) Prove that $x - \frac{1}{2}x^2 \le \ln(1+x) \le x$ for all $x \ge 0$.

Problem 5 (4 + 4 + 7 points)

Consider the following series:

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{\sin^2(nx) + n^2}$$

Prove the following statements:

- (a) The series converges uniformly on \mathbb{R} .
- (b) f is continuous on \mathbb{R} .
- (c) f is differentiable on \mathbb{R} .

Problem 6 (7 + 4 + 4 points)

Consider the function $h:[0,2]\to\mathbb{R}$ defined by

$$h(x) = \begin{cases} 0 & \text{if } 0 \le x < 1, \\ 1 & \text{if } x = 1, \\ 2 & \text{if } 1 < x \le 2. \end{cases}$$

(a) Prove that h is integrable on [0, 2].

Define the function

$$H:[0,2]\to\mathbb{R},\qquad H(x)=\int_0^x h(t)dt.$$

- (b) Compute H'(x) for $x \neq 1$.
- (c) Is H differentiable at x = 1? If so, compute H'(1).

End of test (90 points)

Solution of Problem 1 (6 + 4 + 5 points)

(a) Assume that $\sqrt{3}$ is rational. Then there exist integers p and q such that

$$\sqrt{3} = \frac{p}{q} \quad \Leftrightarrow \quad 3q^2 = p^2.$$

We may assume that p and q do not have any common factors.

(2 points)

Since the left hand side is a multiple of 3, it follows that p^2 is a multiple of 3. This is the case if and only if p itself is a multiple of 3, so p = 3k. for some integer k. Therefore, we have

$$3q^2 = (3k)^2 \quad \Leftrightarrow \quad q^2 = 3k^2.$$

Since the right hand side is a multiple of 3, q must be a multiple of 3 as well.

(2 points)

Therefore, we conclude that p and q have a factor 3 in common. This contradicts our assumption that the fraction p/q is written in lowest terms. Hence, $\sqrt{3}$ is irrational. (2 points)

(b) The rational numbers are dense in the real numbers. This means that for all $a, b \in \mathbb{R}$ with a < b there exists a number $r \in \mathbb{Q}$ such that a < r < b.

(3 points)

Applying this with $a = \sqrt{3} - 1/n$ and $b = \sqrt{3}$ gives the desired statement. (1 point)

(c) Consider the set $A = \{a_n : n \in \mathbb{N}\}$ where the a_n are as in part (b). Then $A \subset \mathbb{Q}$ and A is bounded above. Indeed, $a_n < \sqrt{3}$ for all $n \in \mathbb{N}$.

(2 points)

However, A does not have a least upper bound in \mathbb{Q} . From part (b) it follows that $\sup A = \sqrt{3}$, but from part (a) it follows that $\sqrt{3} \notin \mathbb{Q}$. So not all sets in \mathbb{Q} that are bounded above have a least upper bound in \mathbb{Q} . This means that the Axiom of Completeness does not hold for \mathbb{Q} .

(3 points)

Problem 2 (4+4+2+5 points)

(a) For n = 1 the given property of (x_n) reads as

$$|x_3 - x_2| \le c|x_2 - x_1|$$

which proves the desired statement for n = 1.

(1 point)

Now assume that the statement is true for some $n \in \mathbb{N}$, then

$$|x_{n+3} - x_{n+2}| \le c|x_{n+2} - x_{n+1}| \le c \cdot c^n|x_2 - x_1| = c^{n+1}|x_2 - x_1|,$$

which shows that the statement is also true for n + 1. By induction, the statement holds for all $n \in \mathbb{N}$.

(3 points)

(b) If m > n, then the triangle inequality gives

$$|x_m - x_n| = |x_m - x_{m-1} + x_{m-1} - x_{m-2} + \dots + x_{n+1} - x_n|$$

$$\leq |x_m - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_n|.$$

(2 points)

Using part (a) then gives

$$|x_m - x_n| \le c^{m-2}|x_2 - x_1| + c^{m-3}|x_2 - x_1| + \dots + c^{n-1}|x_2 - x_1|$$

which completes the proof.

(2 points)

(c) This follows directly from

$$c^{m-2} + c^{m-3} + \dots + c^{n-1} < \sum_{k=n-1}^{\infty} c^k = c^{n-1} \sum_{k=0}^{\infty} c^k = \frac{c^{n-1}}{1-c}.$$

(2 points)

(d) Since 0 < c < 1 we have $\lim c^{n-1} = 0$. Hence, for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$n \ge N \quad \Rightarrow \quad 0 < c^{n-1} < \frac{1-c}{|x_2 - x_1|} \epsilon$$

(3 points)

In particular, this gives

$$m > n \ge N \quad \Rightarrow \quad |x_m - x_n| < \epsilon$$

which shows that (x_n) is a Cauchy sequence. Since Cauchy sequences are convergent the proof is complete.

(2 points)

Note: if $|x_2 - x_1| = 0$ then this argument does not work, but in this case we have that (x_n) is a constant sequence and hence trivially convergent.

Solution of Problem 3 (7 + 8 points)

(a) Let (x_n) be a convergent sequence in A and let $x = \lim x_n$. For each $n \in \mathbb{N}$ there exists an element $y_n \in K$ such that $|x_n - y_n| \le 1$, or, equivalently, $-1 \le x_n - y_n \le 1$. (2 points)

Since K is compact the sequence (y_n) has a convergent subsequence (y_{n_k}) with $y = \lim y_{n_k} \in K$.

(2 points)

Note that $\lim x_{n_k} = x$, and $-1 \le x_{n_k} - y_{n_k} \le 1$ for all $k \in \mathbb{N}$. By the Order Limit Theorem it follows that $-1 \le x - y \le 1$, or, equivalently, $|x - y| \le 1$. Since $y \in K$ it follows that $x \in A$.

(3 points)

(b) From part (a) it follows that A is closed, see Theorem 3.2.8.

(2 points)

Now we prove that A is bounded as well. First note that K is compact and hence bounded. This means that there exists M > 0 such that $|y| \leq M$ for all $y \in K$.

(2 points)

Let $x \in A$ be arbitrary, then there exists $y \in K$ such that $|x - y| \le 1$ which implies that

$$|x| = |x - y + y| \le |x - y| + |y| \le 1 + M.$$

This shows that A is bounded.

(2 points)

Since A is closed and bounded it follows that A is compact.

(2 points)

Solution of Problem 4 (4 + 5 + 6 points)

(a) If $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] and differentiable on (a,b), then there exists a point $c\in(a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

(4 points)

(b) Let x > 0 be fixed. The function h = f - g is continuous on [0, x] and differentiable on (0, x) by the Algebraic Continuity and Differentiability Theorems. Therefore, we can apply the Mean Value Theorem. There exists a point $c \in (0, x)$ such that

$$h(x) - h(0) = h'(c)(x - 0).$$

(2 points)

Since h(0) = f(0) - g(0) = 0 and $h'(c) \le 0$ it follows that $h(x) \le 0$, or, equivalently, $f(x) \le g(x)$, which completes the proof. (3 points)

(c) Let $f(x) = x - \frac{1}{2}x^2$ and $g(x) = \ln(1+x)$. Note that f(0) = g(0) and for $x \ge 0$ we have

$$1 - x^2 \le 1 \quad \Rightarrow \quad (1 - x)(1 + x) \le 1 \quad \Rightarrow \quad 1 - x \le \frac{1}{1 + x} \quad \Rightarrow \quad f'(x) \le g'(x).$$

From part (b) it then follows that $f(x) \leq g(x)$ for all $x \geq 0$. (3 points)

Next, let $f(x) = \ln(1+x)$ and g(x) = x. Note that f(0) = g(0) and for $x \ge 0$ we have

$$\frac{1}{1+x} \le 1 \quad \Rightarrow \quad f'(x) \le g'(x).$$

From part (b) it then follows that $f(x) \leq g(x)$ for all $x \geq 0$. (3 points)

Solution of Problem 5 (4 + 4 + 7 points)

(a) For all $n \in \mathbb{N}$ we define

$$f_n(x) = \frac{1}{\sin^2(nx) + n^2}.$$

Note that $|f_n(x)| \leq 1/n^2$ for all $x \in \mathbb{R}$.

(1 point)

Since the series $\sum_{n=1}^{\infty} 1/n^2$ converges, it follows from the Weierstrass M-test with $M_n = 1/n^2$ that the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on \mathbb{R} .

(3 points)

(b) Each f_n is continuous on \mathbb{R} : this follows from the fact that the sine function is continuous and the Algebraic Continuity Theorem. (Note that the denominator of $f_n(x)$ is never zero.)

(3 points)

Since the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on \mathbb{R} it follows that the sum is also continuous on \mathbb{R} .

(1 point)

(c) Let c > 0 be arbitrary. The chain rule gives

$$f'_n(x) = -\frac{2n\sin(nx)\cos(nx)}{(\sin^2(nx) + n^2)^2}.$$

which implies that

$$|f'_n(x)| \le \frac{2n}{(\sin^2(nx) + n^2)^2} \le \frac{2n}{n^4} = \frac{2}{n^3}$$
 for all $x \in [-c, c]$.

Applying the Weierstrass M-test with $M_n = 2/n^3$ we find that the series $\sum_{n=1}^{\infty} f'_n(x)$ converges uniformly on [-c, c].

(3 points)

Finally, note that $\sum_{n=1}^{\infty} f_n(0) = \sum_{n=1}^{\infty} 1/n^2$ converges.

(1 point)

According to Theorem 6.4.3 these two conditions imply that the function f is differentiable on [-c, c]. Since c is arbitrary, it follows that f is differentiable on \mathbb{R} .

(3 points)

Solution of Problem 6 (7 + 4 + 4) points

Consider the function $h:[0,2]\to\mathbb{R}$ defined by

$$h(x) = \begin{cases} 0 & \text{if } 0 \le x < 1, \\ 1 & \text{if } x = 1, \\ 2 & \text{if } 1 < x \le 2. \end{cases}$$

(a) Let $\epsilon > 0$ be arbitrary and take the partition $P = \{0, 1 - \frac{1}{8}\epsilon, 1 + \frac{1}{8}\epsilon, 2\}$. Then we have:

$$M_1 = \sup\{h(x) : x \in [0, 1 - \frac{1}{8}\epsilon]\} = 0$$

$$M_2 = \sup\{h(x) : x \in [1 - \frac{1}{8}\epsilon, 1 + \frac{1}{8}\epsilon]\} = 2$$

$$M_3 = \sup\{h(x) : x \in [1 + \frac{1}{8}\epsilon, 2]\} = 2$$

$$m_1 = \inf\{h(x) : x \in [0, 1 - \frac{1}{8}\epsilon]\} = 0$$

$$m_2 = \inf\{h(x) : x \in [1 - \frac{1}{8}\epsilon, 1 + \frac{1}{8}\epsilon]\} = 0$$

$$m_3 = \inf\{h(x) : x \in [1 + \frac{1}{8}\epsilon, 2]\} = 2$$

$$U(h,P) - L(f,P) = (M_1 - m_1)(1 - \frac{1}{8}\epsilon) + (M_2 - m_2)\frac{1}{4}\epsilon + (M_3 - m_3)(1 - \frac{1}{8}\epsilon) = \frac{1}{2}\epsilon$$

(5 points for a correct computation)

We conclude that for any $\epsilon > 0$ there exists a partition of [0, 2] for which the difference between upper and lower sum is less than ϵ . This implies that h is integrable on [0, 2]. (2 points for the conclusion)

(b) Since h is constant on the intervals [0,1) and (1,2], it follows that h is continuous on those intervals. Hence, we may apply the Fundamental Theorem of Calculus.

(2 points)

For
$$x \in [0,1)$$
 we get $H'(x) = h(x) = 0$.
(1 point)
For $x \in (1,2]$ we get $H'(x) = h(x) = 2$.
(1 point)

(c) If H were differentiable at x=1 then H would be differentiable on the interval [0,2]. Now let $0 < \alpha < 2$, then by Darboux's Theorem it follows that there exists a point $c \in [0,2]$ such that $H'(c) = \alpha$. In view of part (b) the only possibility is c=1, which would mean that H'(1) takes all values between 0 and 2. This is clearly impossible, and therefore we conclude that H is not differentiable at x=1.

(4 points)

Alternative proof. One can also show that for $x \neq 1$ we have

$$\frac{H(x) - H(1)}{x - 1} = \begin{cases} 0 & \text{if } x < 1 \\ 2 & \text{if } x > 1 \end{cases},$$

which immediately shows that the limit

$$\lim_{x \to 1} \frac{H(x) - H(1)}{x - 1}$$

does not exist. Hence, H is not differentiable at x = 1.